DAY — 09 SEAT NUMBER

 $oxed{2025 \ | \ II \ | \ 22} oxed{1100} oxed{J-312} \ oxed{(E)}$

MATHEMATICS & STATISTICS (40) (ARTS & SCIENCE)

Time: 3 Hrs. (8 Pages) Max. Marks: 80

General instructions:

The question paper is divided into FOUR sections.

- (1) Section A: Q. 1 contains Eight multiple choice type questions carrying Two marks each.
 - Q. 2 contains Four very short answer type questions carrying One mark each.
- (2) Section B: This section contains Twelve short answer type questions carrying Two marks each.

 (Attempt any Eight)
- (3) Section C: This section contains Twelve short answer type questions carrying Three marks each.

 (Attempt any Eight)
- (4) Section D: This section contains Eight long answer type questions carrying Four marks each.

 (Attempt any Five)
- (5) Use of log table is allowed. Use of calculator is not allowed.
- (6) Figures to the right indicate full marks.

- (7) Use of graph paper is <u>not</u> necessary. Only rough sketch of graph is expected.
- (8) For each multiple choice type of questions, only the first attempt will be considered for evaluation.
- (9) Start answer to each section on a new page.

SECTION - A

- Q. 1. Select and write the correct answer of the following multiple choice type of questions:
 - (i) If $A = \{1, 2, 3, 4, 5\}$ then which of the following is not true?
 - (a) $\exists x \in A \text{ such that } x + 3 = 8$
 - (b) $\exists x \in A \text{ such that } x + 2 < 9$
 - (c) $\forall x \in A, x+6 \ge 9$
 - (d) $\exists x \in A \text{ such that } x + 6 < 10$
 - (ii) In $\triangle ABC$, $(a+b) \cdot \cos C + (b+c) \cos A + (c+a) \cdot \cos B$ is equal to _____.
 - (a) a-b+c
 - (b) a + b c
 - (c) a+b+c
 - (d) a-b-c

(iii) If $|\overline{a}| = 5$, $|\overline{b}| = 13$ and $|\overline{a} \times \overline{b}| = 25$ then $|\overline{a} \cdot \overline{b}|$ is equal to

(a) 30

(b) 60

(c) 40

(d) 45

(2)

(2)

(2)

(iv)	The vector equation of the line passing through the
	point having position vector $4\hat{i} - \hat{j} + 2\hat{k}$ and parallel to
	vector $-2\hat{i} - \hat{j} + \hat{k}$ is given by

(a)
$$(4\hat{i} - \hat{j} - 2\hat{k}) + \lambda(-2\hat{i} - \hat{j} + \hat{k})$$

(b)
$$(4\hat{i} - \hat{j} + 2\hat{k}) + \lambda(2\hat{i} - \hat{j} + \hat{k})$$

(c)
$$(4\hat{i} - \hat{j} + 2\hat{k}) + \lambda(-2\hat{i} - \hat{j} - \hat{k})$$

(d)
$$(4\hat{i} - \hat{j} + 2\hat{k}) + \lambda(-2\hat{i} - \hat{j} + \hat{k})$$

(v) Let
$$f(1) = 3$$
, $f'(1) = -\frac{1}{3}$, $g(1) = -4$ and $g'(1) = -\frac{8}{3}$. The derivative of $\sqrt{[f(x)]^2 + [g(x)]^2}$ w.r.t. x at $x = 1$ is _____.

(a)
$$-\frac{29}{25}$$

(b)
$$\frac{7}{3}$$

(c)
$$\frac{31}{15}$$

(d)
$$\frac{29}{15}$$

(2)

- If the mean and variance of a binomial distribution are (vi) 18 and 12 respectively, then n is equal to _____.
 - (a) 36

(b) 54

(c) 18 (d) 27

(2)

(vii) The value of
$$\int x^x (1 + \log x) dx$$
 is equal to _____.

- (a) $\frac{1}{2}(1 + \log x)^2 + c$ (b) $x^{2x} + c$
- $x^x \cdot \log x + c$ (d) $x^x + c$ (c)

- (2)
- The area bounded by the line y = x, X-axis and the lines (viii) x = -1 and x = 4 is equal to _____. (in square units)
 - (a) $\frac{2}{17}$

(b) 8

(c) $\frac{17}{2}$

(d) $\frac{1}{2}$

(2)

Q. 2. Answer the following questions:

[4]

- (i) Write the negation of the statement: ' $\exists n \in N$ such that n+8>11' (1)
- (iii) Write the order of the differential equation

$$\sqrt{1 + \left(\frac{dy}{dx}\right)^2} = \left(\frac{d^2y}{dx^2}\right)^{\frac{3}{2}} \tag{1}$$

(iv) Write the condition for the function f(x), to be strictly increasing, for all $x \in R$. (1)

SECTION - B

Attempt any EIGHT of the following questions:

[16]

- **Q. 3.** Using truth table, prove that the statement patterns $p \leftrightarrow q$ and $(p \land q) \lor (\sim p \land \sim q)$ are logically equivalent. (2)
- **Q. 4.** Find the adjoint of the matrix $\begin{bmatrix} 2 & -2 \\ 4 & 3 \end{bmatrix}$. (2)
- **Q. 5.** Find the general solution of $\tan^2 \theta = 1$. (2)
- **Q. 6.** Find the co-ordinates of the points of intersection of the lines represented by $x^2 y^2 2x + 1 = 0$. (2)
- Q. 7. A line makes angles of measure 45° and 60° with the positive directions of the Y and Z axes respectively. Find the angle made by the line with the positive direction of the X-axis. (2)

- **Q. 8.** Find the vector equation of the plane passing through the point having position vector $2\hat{i}+3\hat{j}+4\hat{k}$ and perpendicular to the vector $2\hat{i}+\hat{j}-2\hat{k}$. (2)
- Q. 9. Divide the number 20 into two parts such that sum of their squares is minimum. (2)
- **Q. 10.** Evaluate: $\int x^9 \cdot \sec^2(x^{10}) dx$ (2)
- **Q. 11.** Evaluate: $\int \frac{1}{25-9x^2} dx$ (2)
- **Q. 12.** Evaluate: $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{1}{1 \sin x} dx$ (2)
- **Q. 13.** Find the area of the region bounded by the parabola $y^2 = 16x$ and its latus rectum. (2)
- **Q. 14.** Suppose that X is waiting time in minutes for a bus and its p.d.f. is given by:

$$f(x) = \frac{1}{5}$$
, for $0 \le x \le 5$

= 0, otherwise.

Find the probability that :

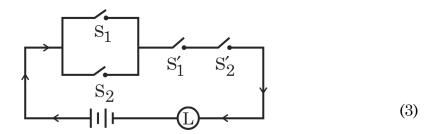
- (i) waiting time is between 1 to 3 minutes.
- (ii) waiting time is more than 4 minutes. (2)

SECTION - C

Attempt any EIGHT of the following questions:

[24]

Q. 15. Express the following switching circuit in the symbolic form of logic. Construct the switching table and interpret it:



- **Q. 16.** Prove that: $2 \tan^{-1} \left(\frac{1}{3} \right) + \cos^{-1} \left(\frac{3}{5} \right) = \frac{\pi}{2}$. (3)
- Q. 17. In $\triangle ABC$ if a=13, b=14, c=15 then find the values of (i) $\sec A$ (ii) $\csc \frac{A}{2}$.
- **Q. 18.** A line passes through the points (6, -7, -1) and (2, -3, 1). Find the direction ratios and the direction cosines of the line. Show that the line does not pass through the origin. (3)
- **Q. 19.** Find the cartesian and vector equations of the line passing through A(1, 2, 3) and having direction ratios 2, 3, 7. (3)
- **Q. 20.** Find the vector equation of the plane passing through points A(1, 1, 2), B(0, 2, 3) and C(4, 5, 6). (3)
- **Q. 21.** Find the n^{th} order derivative of $\log x$. (3)
- **Q. 22.** The displacement of a particle at time t is given by $s = 2t^3 5t^2 + 4t 3$. Find the velocity and displacement at the time when the acceleration is 14 ft/sec^2 . (3)

Page 6

Q. 23.	Find the equations of tangent and normal to the curve	
	$y = 2x^3 - x^2 + 2$ at point $(\frac{1}{2}, 2)$.	(3)

- **Q. 24.** Three coins are tossed simultaneously, X is the number of heads. Find the expected value and variance of X. (3)
- **Q. 25.** Solve the differential equation : $x \frac{dy}{dx} = x \cdot \tan\left(\frac{y}{x}\right) + y$. (3)
- **Q. 26.** Five cards are drawn successively with replacement from a well-shuffled deck of 52 cards. Find the probability that:
 - (i) all the five cards are spades.
 - (ii) none is spade. (3)

SECTION - D

Attempt any FIVE of the following questions: [20]

- Q.27. Find the inverse of $\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$ by elementary row transformations. (4)
- **Q. 28.** Prove that homogeneous equation of degree two in x and y, $ax^2 + 2hxy + by^2 = 0$ represents a pair of lines passing through the origin if $h^2 ab \ge 0$. Hence show that equation $x^2 + y^2 = 0$ does not represent a pair of lines. (4)
- **Q. 29.** Let \overline{a} and \overline{b} be non-collinear vectors. If vector \overline{r} is coplanar with \overline{a} and \overline{b} then show that there exist unique scalars t_1 and t_2 such that $\overline{r} = t_1 \overline{a} + t_2 \overline{b}$. For $\overline{r} = 2\hat{i} + 7\hat{j} + 9\hat{k}$, $\overline{a} = \hat{i} + 2\hat{j}$, $\overline{b} = \hat{j} + 3\hat{k}$, find t_1 , t_2 .

Q. 30. Solve the linear programming problem graphically.

Maximize: z = 3x + 5y

Subject to: $x + 4y \le 24$,

$$3x + y \le 21$$
,

$$x + y \leq 9$$
,

$$x \ge 0, y \ge 0$$

Also find the maximum value of z.

(4)

Q. 31. If x = f(t) and y = g(t) are differentiable functions of t so that y is a function of x and if $\frac{dx}{dt} \neq 0$

then prove that $\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}$.

Hence find the derivative of 7^x w.r.t. x^7 . (4)

- **Q. 32.** Evaluate: $\int e^{\sin^{-1} x} \left(\frac{x + \sqrt{1 x^2}}{\sqrt{1 x^2}} \right) dx$ (4)
- **Q. 33.** Prove that : $\int_{a}^{b} f(x)dx = \int_{a}^{b} f(a+b-x)dx$

Hence evaluate:
$$\int_{0}^{3} \frac{\sqrt{x}}{\sqrt{x} + \sqrt{3 - x}} dx$$
 (4)

Q. 34. If a body cools from 80°C to 50°C at room temperature of 25°C in 30 minutes, find the temperature of the body after 1 hour. (4)

